we have the formula
[tex]FV=PV\cdot\frac{e^{rt}-1}{e^{\frac{r}{n}}-1}[/tex]where
FV=$4,000
t=4 years
n=4*12=48 months
r=0.5%=0.005
substitute given values in the formula
[tex]4,000=PV\cdot\frac{e^{0.005\cdot4}-1}{e^{\frac{0.005}{48}}-1}[/tex]Solve for PV
[tex]PV=\frac{4,000\cdot(e^{\frac{0.005}{48}}-1)}{e^{0.005\cdot4}-1}[/tex]