Respuesta :
Answer:
[tex]r=4\sqrt{5}\:\: \sf m[/tex]
Step-by-step explanation:
[tex]\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}[/tex]
Given:
- Area = 80π m²
Substitute the given value into the formula and solve for r:
[tex]\implies 80 \pi = \pi r^2[/tex]
[tex]\implies \dfrac{80 \pi}{\pi} = \dfrac{\pi r^2}{\pi}[/tex]
[tex]\implies 80=r^2[/tex]
[tex]\implies \sqrt{r^2}=\sqrt{80}[/tex]
[tex]\implies r=\sqrt{80}[/tex]
[tex]\implies r=\sqrt{16 \cdot 5}[/tex]
[tex]\implies r=\sqrt{16}\sqrt{5}[/tex]
[tex]\implies r=\sqrt{4^2}\sqrt{5}[/tex]
[tex]\implies r=4\sqrt{5}[/tex]
[tex] \large❏ \: \Large\begin{gathered} {\underline{\boxed{ \sf {\red{Area \: of \: circle \: = \: πr²}}}}}\end{gathered} [/tex]
- Where , r denotes radius of circle.
Substituting , the given values into the formula and solving for r.
[tex]\large\purple\implies \rm \large \:Area \: of \: circle \: = \: πr²[/tex]
[tex]\large\purple\implies \rm \large \:80\pi \: = \: \pi {r}^{2} [/tex]
[tex]\large\purple\implies \rm \large \:80 \cancel\pi \: = \: \cancel\pi {r}^{2} [/tex]
[tex]\large\purple\implies \rm \large \:80 \: = \: {r}^{2} [/tex]
[tex]\large\purple\implies \rm \large \: \sqrt{80} \: = \: r[/tex]
[tex]\large\purple\implies \rm \large \:4 \sqrt{5} \: = \: r[/tex]
Hence , the radius of circle is 4√5.