Respuesta :
Answer:
523.333 cubic yards
Step-by-step explanation:
The formula for the volume of a sphere is [tex]\frac{4}{3}\pi r^{3}[/tex] where [tex]r[/tex] is the radius.
The radius of the given sphere is [tex]r=5[/tex] yards and [tex]\pi =3.14[/tex].
Therefore, we can substitute in the radius and solve:
[tex]V_{sphere}= \frac{4}{3}\*\times3.14\times 5^{3} =523.333[/tex] cubic yards
Answer:
- Volume of the sphere is 523.33 cubic yards
Step-by-step explanation:
Given :-
- Radius of sphere = 5 yards
- π = 3.14
To Find :-
- Volume of Sphere
Using formula :-
[tex]\\ \: \: \: \dashrightarrow \: \: \: { \underline{ \boxed{ \bf{Volume_{(Sphere)} = \dfrac{4}{3} \pi {r}^{3}}}}}\\ \\ [/tex]
On Substituting the required values in above formula, we get:
[tex]\\ \: \: \dashrightarrow \: \: \: \sf Volume_{(Sphere)} = \frac{4}{3} \times 3.14 \times {(5)}^{3} \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf Volume_{(Sphere)} = \frac{4}{3} \times 3.14 \times 125 \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf Volume_{(Sphere)} = \frac{4}{3} \times 392.5 \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf Volume_{(Sphere)} = \frac{1570}{3} \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf Volume_{(Sphere)} = 523.333 ~yd ^{3} \\ \\ \\ [/tex]
Hence,
- Volume of the sphere is 523.333 cubic yards