ANSWER ASAP GIVE BRAINLIST 100 POINTS

A point is plotted on the number line at 4 3/5 . A second point is plotted at −3 3/4 .

What is the length of a line segment joining these points?

Enter your answer as a simplified mixed number in the box.

Respuesta :

The difference between both points is the distance

  • 4-3/5=23/5
  • -3-3/4=-15/4

Subtract

  • 23/5-(-15/4)
  • 23/5+15/4
  • 92+75/20
  • 167/20
  • 8-7/20 units

Answer:

[tex]8\frac{7}{20}[/tex]

Step-by-step explanation:

Step 1:  Convert both mixed fractions into improper fractions

[tex]4\frac{3}{5}[/tex]

[tex]\frac{3+(4*5)}{5}[/tex]

[tex]\frac{3+20}{5}[/tex]

[tex]\frac{23}{5}[/tex]

[tex]-3\frac{3}{4}[/tex]

[tex]-\frac{3+(3*4)}{4}[/tex]

[tex]-\frac{3+12}{4}[/tex]

[tex]-\frac{15}{4}[/tex]

Step 2:  Convert to have common denominators

[tex]\frac{23}{5}*\frac{4}{4}[/tex]

[tex]\frac{23*4}{5*4}[/tex]

[tex]\frac{92}{20}[/tex]

[tex]-\frac{15}{4}*\frac{5}{5}[/tex]

[tex]-\frac{15*5}{4*5}[/tex]

[tex]-\frac{75}{20}[/tex]

Step 3:  Determine the length of a segment

[tex]\frac{92}{20}-(-\frac{75}{20})[/tex]

[tex]\frac{92}{20}+\frac{75}{20}[/tex]

[tex]\frac{92+75}{20}[/tex]

[tex]\frac{167}{20}[/tex]

Step 4:  Convert to mixed number

[tex]\frac{167}{20}[/tex]

[tex]\frac{(20*8)+7}{20}[/tex]

[tex]8\frac{7}{20}[/tex]

Answer: [tex]8\frac{7}{20}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico