Respuesta :

Answer:

see explanation

Step-by-step explanation:

Calculate AC and AB using the distance formula

d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = A(1,8) and (x₂, y₂ ) = C(4,2)

AC = [tex]\sqrt{(4-1)^2+(2-8)^2}[/tex]

      = [tex]\sqrt{3^2+(-6)^2}[/tex]

       = [tex]\sqrt{9+36}[/tex]

       = [tex]\sqrt{45}[/tex] = [tex]\sqrt{9(5)}[/tex] = 3[tex]\sqrt{5}[/tex]

Repeat with

(x₁, y₁ ) = A(1, 8) and (x₂, y₂ ) = B(2, 6)

AB = [tex]\sqrt{(2-1)^2+(6-8)^2}[/tex]

      = [tex]\sqrt{1^2+(-2)^2}[/tex]

       = [tex]\sqrt{1+4}[/tex]

       = [tex]\sqrt{5}[/tex]

So AB = [tex]\sqrt{5}[/tex] and AC = 3[tex]\sqrt{5}[/tex]

Thus

AC = 3AB

Answer:

Proven below

Step-by-step explanation:

Distance Between Points in the Plane

Given two points A(x,y) and B(w,z), the distance between them is:

[tex]d=\sqrt{(w-x)^2+(z-y)^2}[/tex]

Let's calculate the distance AC, where A(1,8) and C(4,2):

[tex]d_{AC}=\sqrt{(4-1)^2+(2-8)^2}[/tex]

[tex]d_{AC}=\sqrt{3^2+(-6)^2}[/tex]

[tex]d_{AC}=\sqrt{9+36}=\sqrt{45}[/tex]

Since 45=9*5:

[tex]d_{AC}=\sqrt{9*5}=3\sqrt{5}[/tex]

Calculate the distance AB, where A(1,8) and B(2,6)

[tex]d_{AB}=\sqrt{(2-1)^2+(6-8)^2}[/tex]

[tex]d_{AB}=\sqrt{1^2+(-2)^2}[/tex]

[tex]d_{AB}=\sqrt{1+4}=\sqrt{5}[/tex]

It follows that:

[tex]d_{AC}=3d_{AB}[/tex]