Respuesta :
Answer:
see explanation
Step-by-step explanation:
Calculate AC and AB using the distance formula
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = A(1,8) and (x₂, y₂ ) = C(4,2)
AC = [tex]\sqrt{(4-1)^2+(2-8)^2}[/tex]
= [tex]\sqrt{3^2+(-6)^2}[/tex]
= [tex]\sqrt{9+36}[/tex]
= [tex]\sqrt{45}[/tex] = [tex]\sqrt{9(5)}[/tex] = 3[tex]\sqrt{5}[/tex]
Repeat with
(x₁, y₁ ) = A(1, 8) and (x₂, y₂ ) = B(2, 6)
AB = [tex]\sqrt{(2-1)^2+(6-8)^2}[/tex]
= [tex]\sqrt{1^2+(-2)^2}[/tex]
= [tex]\sqrt{1+4}[/tex]
= [tex]\sqrt{5}[/tex]
So AB = [tex]\sqrt{5}[/tex] and AC = 3[tex]\sqrt{5}[/tex]
Thus
AC = 3AB
Answer:
Proven below
Step-by-step explanation:
Distance Between Points in the Plane
Given two points A(x,y) and B(w,z), the distance between them is:
[tex]d=\sqrt{(w-x)^2+(z-y)^2}[/tex]
Let's calculate the distance AC, where A(1,8) and C(4,2):
[tex]d_{AC}=\sqrt{(4-1)^2+(2-8)^2}[/tex]
[tex]d_{AC}=\sqrt{3^2+(-6)^2}[/tex]
[tex]d_{AC}=\sqrt{9+36}=\sqrt{45}[/tex]
Since 45=9*5:
[tex]d_{AC}=\sqrt{9*5}=3\sqrt{5}[/tex]
Calculate the distance AB, where A(1,8) and B(2,6)
[tex]d_{AB}=\sqrt{(2-1)^2+(6-8)^2}[/tex]
[tex]d_{AB}=\sqrt{1^2+(-2)^2}[/tex]
[tex]d_{AB}=\sqrt{1+4}=\sqrt{5}[/tex]
It follows that:
[tex]d_{AC}=3d_{AB}[/tex]