Answer:
[tex]F = 10^{-18} *(24.48i + 24.48j - 5.44k)[/tex]
Explanation:
The charge, q, of the particle is [tex]2.72 * 10^{-18} C[/tex]
The velocity, v, of the particle is (5i + 4j - k) m/s
It moves in a region containing electric field, E, of (2i - j - 5k) V/m and magnetic field, B, of (3i + 3j + k) T.
The electric force acting on the particle is given as:
[tex]F = q[E + (v X B)][/tex]
where v X B is cross product.
Therefore:
[tex]F = 2.72 * 10^{-18} * [(2i - j - 5k) + ((5i + 4j - k) X (3i + 3j + k))[/tex]
Let us solve (5i + 4j - k) X (3i + 3j + k):
[tex]\left[\begin{array}{ccc}i&j&k\\5&4&-1\\3&3&1\end{array}\right][/tex]
i(4 + 3) - j(5 + 3) + k(15 - 12) = 7i - 8j + 3k
Therefore:
[tex]F = 2.72 * 10^{-18} * [(2i - j - 5k) + (7i - 8j + 3k)]\\\\F = 2.72 * 10^{-18} *(9i -9j -2k) N\\\\F = 10^{-18} *(24.48i + 24.48j - 5.44k)[/tex]