Now focus on the boundary of D, and solve for y2. Restricting f(x,y) to this boundary, we can express f(x,y) as a function of a single variable x. What is this function and its closed interval domain?

Respuesta :

Answer:

At critical point in D

a

     [tex](x,y) = (0,0)[/tex]

b

[tex]f(x,y) = f(x) =11 -x^2[/tex]

where [tex]-1 \le x \le 1[/tex]

c

maximum value 11

minimum value  10

Step-by-step explanation:

Given [tex]f(x,y) =10x^2 + 11x^2[/tex]

At critical point

[tex]f'(x,y) = 0[/tex]

 =>  [tex][f'(x,y)]_x = 20x =0[/tex]

=>   [tex]x =0[/tex]

Also

[tex][f'(x,y)]_y = 22y =0[/tex]

=>   [tex]y =0[/tex]

Now considering along the boundary

       [tex]D = 1[/tex]

=>  [tex]x^2 +y^2 = 1[/tex]

=>  [tex]y =\pm \sqrt{1- x^2}[/tex]

Restricting [tex]f(x,y)[/tex] to this boundary

      [tex]f(x,y) = f(x) = 10x^2 +11(1-x^2)^{\frac{2}{1} *\frac{1}{2} }[/tex]

                            [tex]= 11-x^2[/tex]

At boundary point D = 1

Which implies that [tex]x \le 1[/tex]  or [tex]x \ge -1[/tex]

So the range of  x is

                  [tex]-1 \le x \le 1[/tex]

Now along this this boundary the critical point is at

            [tex]f'(x) = 0[/tex]

=>         [tex]f'(x) = -2x =0[/tex]

=>         [tex]x=0[/tex]

Now at maximum point [tex](i.e \ x =0)[/tex]

            [tex]f(0) =11 -(0)[/tex]

                   [tex]= 11[/tex]

For the minimum point x = -1 or x =1

              [tex]f(1) = 11 - 1^2[/tex]

                      [tex]=10[/tex]

              [tex]f(-1) = 11 -(-1)^2[/tex]

                         [tex]=10[/tex]

           

             

Ver imagen okpalawalter8