For this case we have the following system of equations according to the statement:
[tex]r_ {a} = 2d_ {b} -3\\d_ {a} + d_ {b} = 49[/tex]
Taking into account that [tex]d = 2r[/tex], we can rewrite the second equation as:
[tex]2r_ {a} + d_ {b} = 49[/tex]
We have the following system:
[tex]r_ {a} = 2d_ {b} -3\\2r_ {a} + d_ {b} = 49[/tex]
We substitute the first equation in the second:
[tex]2 (2d_ {3}) + d_ {b} = 49\\4d_ {b} -6 + d_ {b} = 49\\4d_ {b} + d_ {b} = 49 + 6\\5d_ {b} = 55\\d_ {b} = \frac {55} {5}\\d_ {b} = 11[/tex]
Thus, we have:
[tex]r_ {a} = 2d_ {b} -3\\r_a = 2 (11) -3\\r_a = 22-3\\r_ {a} = 19[/tex]
Then the area of circle A is:
[tex]A = \pi * (r_ {a}) ^ 2\\A = \pi * (19) ^ 2\\A = 1133.54 \ ft ^ 2[/tex]
The circumference is:
[tex]C = 2 \pi * r\\C = 2 * 3.14 * 19\\C = 119.32 \ ft[/tex]
Answer:
[tex]A = 1133.54 \ ft ^ 2\\C = 119.32 \ ft[/tex]