The density of ice is 917kg/m3 and the density of sea water is 1025kg/m3. A swimming polar bear climbs onto a piece of floating ice that has a volume of 5.2m3. What is the weight of the heaviest bear that the ice can support without sinking completely beneath the water?

Respuesta :

Answer:

W_Bear = 5503.7 N

Explanation:

This problem should use the principle here that gives the thrust and Newton's equilibrium equation

                  B - W_ice - W_bear = 0

                  W_bear = B - W_ice

                   

The thrust is given by

            B = ρ _water g V

 Ice weight

            W_ice = m g

Density is

            ρ_ice = m / V

            W_ice = ρ_ice V g

We replace

         W_bear = ρ_water g V - ρ_ice g V

          W_Bear = g V (ρ_water - ρ_ice)

calculate

          W_bear = 9.8 5.2 (1025 - 917)

          W_Bear = 5503.7 N

ACCESS MORE
EDU ACCESS