Answer:
[tex]w= 8.0433*10^{12}rad/s[/tex]
Explanation:
We need to define the variables.
[tex]m= 5.30*10^{-26}Kg[/tex]
[tex]I= 1.94*10^{-46}Kgm^2[/tex]
[tex]v= 596m/s[/tex]
To use the energy conservative equation we need define [tex]K_r[/tex], that is,
[tex]k_r=\frac{2}{3} k_r[/tex]
So,
[tex]\frac{1}{2}Iw^2 = \frac{2}{3} \frac{1}{2} mv^2[/tex]
[tex]w^2 = \frac{2mv^2}{3*I}[/tex]
[tex]w= \sqrt{\frac{2(5.30*10^{-26})(596)^2}{(3(1.94*10^{-46}))}}[/tex]
[tex]w= 8.0433*10^{12}rad/s[/tex]