What is the value of x in the rhombus below?

Answer:
Option C
[tex]21\°[/tex]
Step-by-step explanation:
we know that
The two diagonals of a rhombus are perpendicular
so
Let
O------> the center of the rhombus
m∠AOB=[tex]90\°[/tex]
Remember that
The sum of the internal angles of a triangle is equal to [tex]180\°[/tex]
therefore
in the triangle AOB
m∠AOB+m∠OAB+m∠OBA=[tex]180\°[/tex]
substitute the values
[tex]90\°+(2x+1)\°+(2x+5)\°=180\°[/tex]
solve for x
[tex](4x+6)\°=90\°[/tex]
[tex]4x=90\°-6\°[/tex]
[tex]x=21\°[/tex]