Answer:
[tex]q_c(t) = C_1e^{(-4\times 10^3)t}+C_2e^{(- 10^3)t}[/tex]
Step-by-step explanation:
given,
C = 0.25 × 10⁻⁶ F
R = 5 × 10³ F
L = 1 H
E = 24
the equation of the circuit
[tex]L\dfrac{d^2q}{dt^2}+R\dfrac{dq}{dt}+\dfrac{q}{C}=E[/tex]
substitute the given data
[tex](1)\dfrac{d^2q}{dt^2}+(5 \times 10^3)\dfrac{dq}{dt}+\dfrac{q}{0.25\times 10^6}=24[/tex]
[tex]\dfrac{d^2q}{dt^2}+(5 \times 10^3)\dfrac{dq}{dt}+(4\times 10^6)q=24[/tex]
auxiliary equation
[tex]m^2+(5 \times 10^3)+(4\times 10^6) = 0 [/tex]
[tex]m = \dfrac{-5\times 10^3 \pm \sqrt{(5\times 10^3)^2-4\times 4\times 10^6}}{2}[/tex]
[tex]m = \dfrac{-5\times 10^3 \pm \sqrt{25\times 10^6-16 10^6}}{2}[/tex]
[tex]m = -4 \times 10^3,-10^3[/tex]
so, complimentary function
[tex]q_c(t) = C_1e^{(-4\times 10^3)t}+C_2e^{(- 10^3)t}[/tex]
charge at any time t is given by the above equation.
C₁ and C₂ are arbitrary constant
which will be calculated using boundary condition.