Answer: [tex](\$106.29,\ \$112.37)[/tex]
Step-by-step explanation:
Given : Sample size : [tex]n=60[/tex]
The mean amount of money spent per owner = [tex]\$109.33\text{ per class}[/tex]
Standard deviation : [tex]\sigma=\$12[/tex]
Significance level : [tex]\alpha=1-0.95=0.05[/tex]
Critical value : [tex]z_{\alpha/2}=1.96[/tex]
We know that the confidence interval for population mean is given by :-
[tex]\mu\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]109.33\pm(1.96)\dfrac{12}{\sqrt{60}}\\\\\approx109.33\ \pm\ 3.04\\\\\approx(109.33-3.04,\ 109.33+3.04)\\\\(106.29,\ 112.37)[/tex]
Hence, the 95% confidence interval for the mean amount spent per owner for an obedience class will be [tex](\$106.29,\ \$112.37)[/tex]