Answer:
Option D) multiply y by 4 in the first equation and subtract the second equation
Step-by-step explanation:
we have
2x+y=-10 ----> first equation
3x+4y=-20 ---> second equation
Verify each case
case A) multiply the first equation by 4 and subtract the second equation
so
(2x+y)*4=-10*4 ------> 8x+4y=-40
[8x+4y=-40]-[3x+4y=-20] -----> 5x=-20 -----> x=-4
This step is correct
case B) multiply the first equation by -4 and add the second equation
so
(2x+y)*-4=-10*-4 ------> -8x-4y=40
[-8x-4y=40]+[3x+4y=-20] ----->-5x=20 -----> x=-4
This step is correct
case C) add 8 times the first equation and −2 times the second equation
so
(2x+y)*8=-10*8 ------> 16x+8y=-80
(3x+4y)*-2=-20*-2 ----> -6x-8y=40
[16x+8y=-80]+[-6x-8y=40] ----->10x=-40 -----> x=-4
This step is correct
case D) multiply y by 4 in the first equation and subtract the second equation
so
2x+4y=-10
[2x+4y=-10]-[3x+4y=-20] -----> -x=-10+20 -----> x=-10
This step is incorrect
NOT produce a system with the same solution