Respuesta :

Rule for even

[tex]\\ \sf\longmapsto \boxed{\sf f(-x)=f(x),x\in D_f}[/tex]

Rule for odd

[tex]\\ \sf\longmapsto \boxed{\sf f(-x)=-f(x),D_f}[/tex]

  • Here D_f means domain of function.

#1

[tex]\\ \sf\longmapsto f(x)=\sqrt{x^2}-9[/tex]

  • Take x=4

[tex]\\ \sf\longmapsto f(4)=\sqrt{4^2}-9=4-9=-5[/tex]

[tex]\\ \sf\longmapsto f(-4)=\sqrt{(-4)^2}=4-9=-5[/tex]

Even function✓

#2

[tex]\\ \sf\longmapsto g(x)=|x-3|[/tex]

  • Take x=2

[tex]\\ \sf\longmapsto g(2)=|2-3|=|-1|=1[/tex]

[tex]\\ \sf\longmapsto g(-2)=|-2-3|=|-5|=5[/tex]

[tex]\\ \sf\longmapsto -g(2)=-1[/tex]

Odd function✓

#3

[tex]\\ \sf\longmapsto f(x)=\dfrac{x}{x^2-1}[/tex]

  • Take x=3

[tex]\\ \sf\longmapsto f(3)=\dfrac{3}{3^2-1}=\dfrac{3}{9-1}=\dfrac{3}{8}[/tex]

[tex]\\ \sf\longmapsto f(-3)=\dfrac{-3}{(-3)^2-1}=\dfrac{-3}{8}[/tex]

[tex]\\ \sf\longmapsto -f(3)=\dfrac{-3}{8}[/tex]

Odd function ✓

#4

[tex]\\ \sf\longmapsto g(x)=x+x^2[/tex]

  • Take x=1

[tex]\\ \sf\longmapsto g(1)=1+(1)^2=2[/tex]

[tex]\\ \sf\longmapsto g(-1)=-1+(-1)^2=0[/tex]

[tex]\\ \sf\longmapsto -g(1)=-2[/tex]

Neither✓

RELAXING NOICE
Relax