Answer : [tex]\theta=42.84\ ^0[/tex]
Explanation :
It is given that,
Wavelength, [tex]\lambda=0.0735\ nm=0.0735\times 10^{-9}\ m[/tex]
According to bragg's law:
[tex]2d\ sin\theta=n\lambda[/tex]
d is inter planer spacing for (310) planes such that :
[tex]d=\dfrac{a}{\sqrt{(3)^2+(1)^2+(0)^2} }[/tex]
[tex]d=\dfrac{a}{\sqrt{10} }[/tex]
a is lattice parameter, [tex]a=\dfrac{4R}{\sqrt{3}}=0.2884\ nm[/tex]
R is atomic radius and for BCC [tex]R=0.1249\ nm[/tex]
So, [tex]d_{310}=0.0912\ nm[/tex]
[tex]sin\theta=\dfrac{1\times 0.1249\ nm}{2\times 0.0912\ nm}[/tex]
[tex]sin\theta=\dfrac{0.1249}{0.1824}[/tex]
[tex]sin\theta=0.68[/tex]
[tex]\theta=42.84\ ^0[/tex]
Hence, this is the required solution.