If sin theta = -(sqrt(3))/2 and pi < theta < (3pi)/2, what are the values of cos theta and tan theta?
Answers:
cos theta = -(1)/2; tan theta = sqrt(3)
cos theta = -(1)/2; tan theta = -1
cos theta = (sqrt(3))/4; tan theta = -2
cos theta = 1/2; tan theta = sqrt(3)

Respuesta :

For [tex]\pi<\theta<\dfrac{3\pi}2[/tex], we expect [tex]\cos\theta<0[/tex]. Then recalling that [tex]\sin^2\theta+\cos^2\theta=1[/tex], we have

[tex]\cos\theta=-\sqrt{1-\sin^2\theta}=-\dfrac12[/tex]

Then by definition of tangent,

[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}=\dfrac{-\frac{\sqrt3}2}{-\frac12}=\sqrt3[/tex]

Answer:

Option 1 -

[tex]\cos\theta=-\frac{1}{2}[/tex]

[tex]\tan\theta=\sqrt3[/tex]

Step-by-step explanation:

Given : [tex]\sin\theta=-\frac{\sqrt3}{2}[/tex] and [tex]\pi < \theta < \frac{3\pi}{2}[/tex]

To find : What are the values of [tex]\cos \theta[/tex] and [tex]\tan \theta[/tex]?

Solution :

[tex]\sin\theta=-\frac{\sqrt3}{2}[/tex]

We know, [tex]\cos\theta=\sqrt{1-sin^2\theta}[/tex]

Substitute the value of [tex]\sin\theta[/tex],

[tex]\cos\theta=\sqrt{1-(-\frac{\sqrt3}{2})^2}[/tex]

[tex]\cos\theta=\sqrt{1-\frac{3}{4}}[/tex]

[tex]\cos\theta=\sqrt{\frac{4-3}{4}}[/tex]

[tex]\cos\theta=\sqrt{\frac{1}{4}}[/tex]

[tex]\cos\theta=\frac{1}{2}[/tex]

Since, [tex]\pi < \theta < \frac{3\pi}{2}[/tex] i.e. in third quadrant

We know, [tex]\cos \theta[/tex] in third quadrant is negative.

So, [tex]\cos\theta=-\frac{1}{2}[/tex]

Now, [tex]\tan\theta=\frac{\sin\theta}{\cos\theta}[/tex]

Substitute the value of [tex]\sin\theta[/tex] and [tex]\cos\theta[/tex],

[tex]\tan\theta=\frac{-\frac{\sqrt3}{2}}{-\frac{1}{2}}[/tex]

[tex]\tan\theta=\frac{\sqrt3}{2}\times \frac{2}{1}}[/tex]

[tex]\tan\theta=\sqrt3[/tex]

We know, [tex]\tan \theta[/tex] in third quadrant is positive.

So, [tex]\tan\theta=\sqrt3[/tex]

Therefore, Option 1 is correct.

ACCESS MORE