The amount of salt in the tank changes with rate according to
[tex]Q'(t)=\left(1\dfrac{\rm lb}{\rm gal}\right)\left(4\dfrac{\rm gal}{\rm min}\right)-\left(\dfrac{Q(t)}{300+(4-1)t}\dfrac{\rm lb}{\rm gal}\right)\left(1\dfrac{\rm gal}{\rm min}\right)[/tex]
[tex]\implies Q'+\dfrac Q{300+3t}=4[/tex]
which is a linear ODE in [tex]Q(t)[/tex]. Multiplying both sides by [tex](300+3t)^{1/3}[/tex] gives
[tex](300+3t)^{1/3}Q'+(300+3t)^{-2/3}Q=4(300+3t)^{1/3}[/tex]
so that the left side condenses into the derivative of a product,
[tex]\big((300+3t)^{1/3}Q\big)'=4(300+3t)^{1/3}[/tex]
Integrate both sides and solve for [tex]Q(t)[/tex] to get
[tex](300+3t)^{1/3}Q=(300+3t)^{4/3}+C[/tex]
[tex]\implies Q(t)=300+3t+C(300+3t)^{-1/3}[/tex]
Given that [tex]Q(0)=100[/tex], we find
[tex]100=300+C\cdot300^{-1/3}\implies C=-200\cdot300^{1/3}[/tex]
and we get the particular solution
[tex]Q(t)=300+3t-200\cdot300^{1/3}(300+3t)^{-1/3}[/tex]
[tex]\boxed{Q(t)=300+3t-2\cdot100^{4/3}(100+t)^{-1/3}}[/tex]