Respuesta :
[tex](h;\ k)\ -\ \text{the coordinates of the vertex}[/tex]
[tex]\text{therefore we have:}\ f(x)=a(x-5)^2+2[/tex]
[tex]\text{a parabola that passes through the point (4, −3)}[/tex]
[tex]\text{substitute the coordinates of the point (4;-3) to the equation:}[/tex]
[tex](4;-3)\to x=4;\ y=-3\\\\-3=a(4-5)^2+2\\\\-3=a(-1)^2+2\\\\-3=a+2\ \ \ |-2\\\\a=-5[/tex]
[tex]f(x)=-5(x-5)^2+2=-5(x^2-2\cdot x\cdot5+5^2)+2=-5(x^2-10x+25)+2\\\\=-5x^2+50x-125+2=-5x^2+50x-123[/tex]
[tex]\text{therefore we have:}\ f(x)=a(x-5)^2+2[/tex]
[tex]\text{a parabola that passes through the point (4, −3)}[/tex]
[tex]\text{substitute the coordinates of the point (4;-3) to the equation:}[/tex]
[tex](4;-3)\to x=4;\ y=-3\\\\-3=a(4-5)^2+2\\\\-3=a(-1)^2+2\\\\-3=a+2\ \ \ |-2\\\\a=-5[/tex]
[tex]f(x)=-5(x-5)^2+2=-5(x^2-2\cdot x\cdot5+5^2)+2=-5(x^2-10x+25)+2\\\\=-5x^2+50x-125+2=-5x^2+50x-123[/tex]
Otras preguntas
