Respuesta :
Answer:
[tex]\displaystyle \lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = 6[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Terms/Coefficients
- Factoring
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4}[/tex]
Step 2: Solve
- [Limit] Rewrite [Factoring]: [tex]\displaystyle \lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 2)}{x - 4}[/tex]
- [Limit] Simplify: [tex]\displaystyle \lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = \lim_{x \to 4} x + 2[/tex]
- Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = 4 + 2[/tex]
- [Order of Operations] Evaluate: [tex]\displaystyle \lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = 6[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
