Respuesta :
The set of consecutive integers are:
[tex]z = \{...,-3, -2, -1, 0, +1, +2, +3,...\}[/tex]
If the function is finite, then there are two values [tex]a[/tex] and [tex]b[/tex], being [tex]a\ \textless \ b[/tex], in which this function is valid, then:
[tex]f(x) = x[/tex]
being [tex]x [/tex] the set of integers in the interval defined by [tex](a,b)[/tex]
If the function is infinite, the function is valid in the set of all integers then:
[tex]f(x) = x[/tex]
And -∞[tex]<x<[/tex]+∞
[tex]z = \{...,-3, -2, -1, 0, +1, +2, +3,...\}[/tex]
If the function is finite, then there are two values [tex]a[/tex] and [tex]b[/tex], being [tex]a\ \textless \ b[/tex], in which this function is valid, then:
[tex]f(x) = x[/tex]
being [tex]x [/tex] the set of integers in the interval defined by [tex](a,b)[/tex]
If the function is infinite, the function is valid in the set of all integers then:
[tex]f(x) = x[/tex]
And -∞[tex]<x<[/tex]+∞
Answer:
the answer is sequence (usa test prep)
Step-by-step explanation: