On a coordinate plane, a shape is plotted with vertices of (3, 1), (0, 4), (3, 7), and (6, 4). what is the area of the shape if each grid unit equals one centimeter?

Respuesta :

Let
A (3, 1)
B (0, 4)
C(3, 7)
D (6, 4)

step 1
find the distance AB
d=
√[(y2-y1)²+(x2-x1)²]------> dAB=√[(4-1)²+(0-3)²]-----> dAB=√18 cm

step 2
find the distance CD
d=√[(y2-y1)²+(x2-x1)²]------> dCD=√[(4-7)²+(6-3)²]-----> dCD=√18 cm

step 3
find the distance AD
d=√[(y2-y1)²+(x2-x1)²]------> dAD=√[(4-1)²+(6-3)²]-----> dAD=√18 cm

step 4
find the distance BC
d=√[(y2-y1)²+(x2-x1)²]------> dBC=√[(7-4)²+(3-0)²]-----> dBC=√18 cm

step 5
find slope AB and CD
m=(y2-y1)/(x2-x1)
mAB=-1
mCD=-1
AB and CD are parallel and AB=CD

step 6
find slope AD and BC
m=(y2-y1)/(x2-x1)
mAD=1
mBC=1
AD and BC are parallel and AD=BC
and 
AB and AD are perpendicular 
BC and CD are perpendicular

therefore
the shape is a square wit length side √18 cm

area of a square=b²
b is the length side of a square
area of a square=(√18)²------> 18 cm²

the answer is
18 cm²

see the attached figure


Ver imagen calculista