Respuesta :
The correct answer is option B.
Solution is shown below
[tex]y= 4 x^{3} \\ \\ \frac{y}{4} = x^{3} \\ \\ \sqrt[3]{\frac{y}{4}} =x \\ \\ f^{-1}(y)= \sqrt[3]{\frac{y}{4}} \\ \\ f^{-1}(x)= \sqrt[3]{\frac{x}{4}} \\ \\ y^{-1}= \sqrt[3]{\frac{x}{4}} [/tex]
Solution is shown below
[tex]y= 4 x^{3} \\ \\ \frac{y}{4} = x^{3} \\ \\ \sqrt[3]{\frac{y}{4}} =x \\ \\ f^{-1}(y)= \sqrt[3]{\frac{y}{4}} \\ \\ f^{-1}(x)= \sqrt[3]{\frac{x}{4}} \\ \\ y^{-1}= \sqrt[3]{\frac{x}{4}} [/tex]