Respuesta :

Given:

The recursive formula of a geometric sequence is

[tex]a_n=a_{n-1}\cdot (\dfrac{1}{8})[/tex]

[tex]a_1=-3[/tex]

To find:

The explicit formula of the given geometric sequence.

Solution:

We know that, first term of geometric sequence is [tex]a_1=-3[/tex].

Recursive formula of a geometric sequence is

[tex]a_n=a_{n-1}\times r[/tex]      ...(i)

where, r is common ratio.

We have,

[tex]a_n=a_{n-1}\cdot (\dfrac{1}{8})[/tex]    ...(ii)

On comparing (i) and (ii), we get

[tex]r=\dfrac{1}{8}[/tex]

The explicit formula of a geometric sequence is

[tex]a_n=a_1r^{n-1}[/tex]

Putting [tex]a_1=-3[/tex] and [tex]r=\dfrac{1}{8}[/tex], we get

[tex]a_n=-3\left(\dfrac{1}{8}\right)^{n-1}[/tex]

Therefore, the correct option is D.

RELAXING NOICE
Relax