Respuesta :
The Balanced Chemical Equation is as follow;
             4 KO₂ + 2 CO₂   →  2 K₂CO₃ + 3 O₂
First find out the Limiting Reagent,
According to equation,
     284 g (4 moles) KO₂ reacted with = 44.8 L (2 moles) of CO₂
So,
          27.9 g of KO₂ will react with = X L of CO₂
Solving for X,
             X = (44.8 L × 27.9 g) ÷ 284 g
             X =  4.40 L of CO₂
Hence, to consume 27.9 g of KO₂ only 4.40 L CO₂ is required, while, we are provided with 29 L of CO₂, it means CO₂ is in excess and KO₂ is is limited amount, Therefore, KO₂ will control the yield of K₂CO₃. So,
According to eq.
     284 g (4 moles) KO₂ formed = 138.2 g of K₂CO₃
So,
     27.9 g of KO₂ will form = X g of K₂CO₃
Solving for X,
            X = (138.2 g × 27.9 g) ÷ 284 g
            X =  13.57 g of K₂CO₃
So, 13.57 g of K₂CO₃ formed is the theoretical yield.
%age Yield = 13.57 / 21.8 × 100
%age Yield = 62.24 %
             4 KO₂ + 2 CO₂   →  2 K₂CO₃ + 3 O₂
First find out the Limiting Reagent,
According to equation,
     284 g (4 moles) KO₂ reacted with = 44.8 L (2 moles) of CO₂
So,
          27.9 g of KO₂ will react with = X L of CO₂
Solving for X,
             X = (44.8 L × 27.9 g) ÷ 284 g
             X =  4.40 L of CO₂
Hence, to consume 27.9 g of KO₂ only 4.40 L CO₂ is required, while, we are provided with 29 L of CO₂, it means CO₂ is in excess and KO₂ is is limited amount, Therefore, KO₂ will control the yield of K₂CO₃. So,
According to eq.
     284 g (4 moles) KO₂ formed = 138.2 g of K₂CO₃
So,
     27.9 g of KO₂ will form = X g of K₂CO₃
Solving for X,
            X = (138.2 g × 27.9 g) ÷ 284 g
            X =  13.57 g of K₂CO₃
So, 13.57 g of K₂CO₃ formed is the theoretical yield.
%age Yield = 13.57 / 21.8 × 100
%age Yield = 62.24 %
Answer : The theoretical yield of [tex]K_2CO_3[/tex] = 27.089 g
The percent yield of [tex]K_2CO_3[/tex] Â is, 80.47 %
Explanation : Â Given,
Mass of [tex]KO_2[/tex] = 27.9 g
Volume of [tex]CO_2[/tex] = 29.0 L Â (At STP)
Molar mass of [tex]KO_2[/tex] = 71.10 g/mole
Molar mass of [tex]CO_2[/tex] = 44 g/mole
Molar mass of [tex]K_2CO_3[/tex] = 138.21 g/mole
First we have to calculate the moles of [tex]CO_2[/tex] and [tex]KO_2[/tex].
At STP,
As, 22.4 L volume of [tex]CO_2[/tex] present in 1 mole of [tex]CO_2[/tex]
So, 29.0 L volume of [tex]CO_2[/tex] present in [tex]\frac{29.0}{22.4}=1.29[/tex] mole of [tex]CO_2[/tex]
[tex]\text{Moles of }KO_2=\frac{\text{Mass of }KO_2}{\text{Molar mass of }KO_2}=\frac{27.9g}{71.10g/mole}=0.392mole[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]4KO_2+2CO_2\rightarrow 2K_2CO_3+3O_2[/tex]
From the balanced reaction we conclude that
As, 4 moles of [tex]KO_2[/tex] react with 2 mole of [tex]CO_2[/tex]
So, 0.392 moles of [tex]KO_2[/tex] react with [tex]\frac{2}{4}\times 0.392=0.196[/tex] moles of [tex]CO_2[/tex]
From this we conclude that, [tex]CO_2[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]KO_2[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]K_2CO_3[/tex].
As, 4 moles of [tex]KO_2[/tex] react to give 2 moles of [tex]K_2CO_3[/tex]
So, 0.392 moles of [tex]KO_2[/tex] react to give [tex]\frac{2}{4}\times 0.392=0.196[/tex] moles of [tex]K_2CO_3[/tex]
Now we have to calculate the mass of [tex]K_2CO_3[/tex].
[tex]\text{Mass of }K_2CO_3=\text{Moles of }K_2CO_3\times \text{Molar mass of }K_2CO_3[/tex]
[tex]\text{Mass of }K_2CO_3=(0.196mole)\times (138.21g/mole)=27.089g[/tex]
The theoretical yield of [tex]K_2CO_3[/tex] = 27.089 g
The actual yield of [tex]K_2CO_3[/tex] = 21.8 g
Now we have to calculate the percent yield of [tex]K_2CO_3[/tex]
[tex]\%\text{ yield of }K_2CO_3=\frac{\text{Actual yield of }K_2CO_3}{\text{Theoretical yield of }K_2CO_3}\times 100=\frac{21.8g}{27.089g}\times 100=80.47\%[/tex]
Therefore, the percent yield of [tex]K_2CO_3[/tex] Â is, 80.47 %