) determine the theoretical yield and the percent yield if 21.8 g of k2co3 is produced from reacting 27.9 g ko2 with 29.0 l of co2 (at stp). the molar mass of ko2 = 71.10 g/mol and k2co3 = 138.21 g/mol.

Respuesta :

The Balanced Chemical Equation is as follow;

                         4 KO₂  +  2 CO₂    →    2 K₂CO₃  +  3 O₂

First find out the Limiting Reagent,
According to equation,

         284 g (4 moles) KO₂ reacted with  =  44.8 L (2 moles) of CO₂
So,
                  27.9 g of KO₂ will react with  =  X  L of CO₂


Solving for X,
                          X  =  (44.8 L × 27.9 g) ÷ 284 g

                          X  =  4.40 L of CO₂

Hence, to consume 27.9 g of KO₂ only 4.40 L CO₂ is required, while, we are provided with 29 L of CO₂, it means CO₂ is in excess and KO₂ is is limited amount, Therefore, KO₂ will control the yield of K₂CO₃. So,

According to eq.

         284 g (4 moles) KO₂ formed  =  138.2 g of K₂CO₃
So,
         27.9 g of KO₂ will form  =  X g of K₂CO₃

Solving for X,
                        X  =  (138.2 g × 27.9 g) ÷ 284 g

                        X  =  13.57 g of K₂CO₃

So, 13.57 g of K₂CO₃ formed is the theoretical yield.

%age Yield  =  13.57 / 21.8 × 100

%age Yield  =  62.24 %

Answer : The theoretical yield of [tex]K_2CO_3[/tex] = 27.089 g

The percent yield of [tex]K_2CO_3[/tex]  is, 80.47 %

Explanation :  Given,

Mass of [tex]KO_2[/tex] = 27.9 g

Volume of [tex]CO_2[/tex] = 29.0 L  (At STP)

Molar mass of [tex]KO_2[/tex] = 71.10 g/mole

Molar mass of [tex]CO_2[/tex] = 44 g/mole

Molar mass of [tex]K_2CO_3[/tex] = 138.21 g/mole

First we have to calculate the moles of [tex]CO_2[/tex] and [tex]KO_2[/tex].

At STP,

As, 22.4 L volume of [tex]CO_2[/tex] present in 1 mole of [tex]CO_2[/tex]

So, 29.0 L volume of [tex]CO_2[/tex] present in [tex]\frac{29.0}{22.4}=1.29[/tex] mole of [tex]CO_2[/tex]

[tex]\text{Moles of }KO_2=\frac{\text{Mass of }KO_2}{\text{Molar mass of }KO_2}=\frac{27.9g}{71.10g/mole}=0.392mole[/tex]

Now we have to calculate the limiting and excess reagent.

The balanced chemical reaction is,

[tex]4KO_2+2CO_2\rightarrow 2K_2CO_3+3O_2[/tex]

From the balanced reaction we conclude that

As, 4 moles of [tex]KO_2[/tex] react with 2 mole of [tex]CO_2[/tex]

So, 0.392 moles of [tex]KO_2[/tex] react with [tex]\frac{2}{4}\times 0.392=0.196[/tex] moles of [tex]CO_2[/tex]

From this we conclude that, [tex]CO_2[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]KO_2[/tex] is a limiting reagent and it limits the formation of product.

Now we have to calculate the moles of [tex]K_2CO_3[/tex].

As, 4 moles of [tex]KO_2[/tex] react to give 2 moles of [tex]K_2CO_3[/tex]

So, 0.392 moles of [tex]KO_2[/tex] react to give [tex]\frac{2}{4}\times 0.392=0.196[/tex] moles of [tex]K_2CO_3[/tex]

Now we have to calculate the mass of [tex]K_2CO_3[/tex].

[tex]\text{Mass of }K_2CO_3=\text{Moles of }K_2CO_3\times \text{Molar mass of }K_2CO_3[/tex]

[tex]\text{Mass of }K_2CO_3=(0.196mole)\times (138.21g/mole)=27.089g[/tex]

The theoretical yield of [tex]K_2CO_3[/tex] = 27.089 g

The actual yield of [tex]K_2CO_3[/tex] = 21.8 g

Now we have to calculate the percent yield of [tex]K_2CO_3[/tex]

[tex]\%\text{ yield of }K_2CO_3=\frac{\text{Actual yield of }K_2CO_3}{\text{Theoretical yield of }K_2CO_3}\times 100=\frac{21.8g}{27.089g}\times 100=80.47\%[/tex]

Therefore, the percent yield of [tex]K_2CO_3[/tex]  is, 80.47 %