Respuesta :
V= 100 mL = 0.100 L
P=688 mm Hg
T=565°C =565+273=838 K
M(N2)= 2*14.0 g/mol
R=62.36 L·mmHg·K⁻¹·mol⁻¹
[tex]PV= \frac{m}{M} *RT [/tex]
[tex]m= \frac{PVM}{RT} [/tex][tex]= \frac{688*0.100*14.0}{62.36*838} =0.0184 g[/tex]
P=688 mm Hg
T=565°C =565+273=838 K
M(N2)= 2*14.0 g/mol
R=62.36 L·mmHg·K⁻¹·mol⁻¹
[tex]PV= \frac{m}{M} *RT [/tex]
[tex]m= \frac{PVM}{RT} [/tex][tex]= \frac{688*0.100*14.0}{62.36*838} =0.0184 g[/tex]
Answer: The mass of nitrogen gas present in the given sample is 0.037 g
Explanation:
To calculate the number of moles, we use the equation given by ideal gas equation:
[tex]PV=nRT[/tex]
Or,
[tex]PV=\frac{m}{M}RT[/tex]
where,
P = Pressure of the gas = 688 mmHg
V = Volume of gas = 100 mL = 0.1 L (Conversion factor: 1 L = 1000 mL)
m = Mass of nitrogen gas = ?
M = Molar mass of nitrogen gas = 28 g/mol
R = Gas constant = [tex]62.3637\text{ L.mmHg }mol^{-1}K^{-1}[/tex]
T = Temperature of the gas = [tex]565^oC=[565+273]=838K[/tex]
Putting values in above equation, we get:
[tex]688mmHg\times 0.1L=\frac{m}{28g/mol}\times 62.3637\text{L. mmHg }mol^{-1}K^{-1}\times 838K\\\\m=0.037g[/tex]
Hence, the mass of nitrogen gas present in the given sample is 0.037 g