Which equation represents the line that passes through (–8, 11) and (4, 7/2)?

y = -5/8x + 6
y = -5/8x + 16
y = -15/2x – 49
y = -15/2x + 71

Respuesta :

Answer: First option: y = -5/8x + 6
Ver imagen limacharliesierra
Ver imagen limacharliesierra
Ver imagen limacharliesierra
Ver imagen limacharliesierra

Answer:

Option A -  [tex]y=-\frac{5}{8}x+6[/tex]

Step-by-step explanation:

Given : Two points [tex](-8, 11)[/tex] and [tex](4,\frac{7}{2})[/tex]

To find : The equation represent the line

Solution :

The general form of the equation is [tex](y-y_1)=m(x-x_1)[/tex]

Where, m is the slope of the equation

First we find the slope of the equation [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex](x_1,y_1)=(-8,11)[/tex] and  [tex](x_2,y_2)=(4,\frac{7}{2})[/tex]

Substitute the value,

[tex]m=\frac{\frac{7}{2}-11}{4-(-8)}[/tex]

[tex]m=\frac{\frac{-15}{2}}{12}[/tex]

[tex]m=-\frac{5}{8}[/tex]

Slope of the equation is [tex]m=-\frac{5}{8}[/tex]

Now, Take any point let [tex](x_1,y_1)=(-8,11)[/tex]

The equation form is  [tex](y-11)=-\frac{5}{8}(x-(-8))[/tex]

[tex]y-11=-\frac{5}{8}(x+8)[/tex]

[tex]y-11=-\frac{5}{8}x-5[/tex]

[tex]y=-\frac{5}{8}x+6[/tex]

Therefore, Option A is correct.

The required equation is [tex]y=-\frac{5}{8}x+6[/tex]

ACCESS MORE