Respuesta :
ANSWER
The vertex form is [tex]f(x)=-4(x-3)^2-6[/tex]
EXPLANATION
We use completing squares
[tex]f(x)=-4x^2+24x-42[/tex]
We factor -4 out of the first two terms
[tex]f(x)=-4(x^2-6x)-42[/tex]
We add and subtract [tex]-4(-3)^2[/tex], that is coming from, [tex](\frac{b}{2a})^2[/tex].
[tex]f(x)=-4(x^2-6x)+ -4(-3)^2--4(-3)^2-42[/tex]
[tex]f(x)=-4(x^2-6x+(-3)^2)--4(-3)^2-42[/tex]
The expression in the first parenthesis is now a perfect square.
[tex]f(x)=-4(x-3)^2+36-42[/tex]
[tex]f(x)=-4(x-3)^2-6[/tex]
The function is now in the form,
[tex]f(x)=a(x-h)^2+k[/tex], where [tex]V(h,k)[/tex] is the vertex
Hence the vertex is[tex](3,-6)[/tex]
the equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k ) are the coordinates of the vertex and a is a multiplier
To obtain this form use the method of completing the square
We require the coefficient of the x² term to be 1 so factor out - 4
y = - 4(x² - 6x + [tex]\frac{42}{4}[/tex])
add/subtract (half the coefficient of the x-term )² to x² - 6x
y = - 4(x² + 2(- 3)x +9 - 9 +[tex]\frac{21}{2}[/tex])
= - 4(x - 3)² - 4 (- 9 +[tex]\frac{21}{2}[/tex])
= - 4(x - 3)² - 6 ← in vertex form
with vertex = (3, - 6)