Respuesta :

ANSWER


The vertex form is [tex]f(x)=-4(x-3)^2-6[/tex]



EXPLANATION


We use completing squares


[tex]f(x)=-4x^2+24x-42[/tex]


We factor -4 out of the first two terms


[tex]f(x)=-4(x^2-6x)-42[/tex]

We add and subtract [tex]-4(-3)^2[/tex], that is coming from, [tex](\frac{b}{2a})^2[/tex].


[tex]f(x)=-4(x^2-6x)+ -4(-3)^2--4(-3)^2-42[/tex]

[tex]f(x)=-4(x^2-6x+(-3)^2)--4(-3)^2-42[/tex]


The expression in the first parenthesis is now a perfect square.

[tex]f(x)=-4(x-3)^2+36-42[/tex]


[tex]f(x)=-4(x-3)^2-6[/tex]

The function is now in the form,

[tex]f(x)=a(x-h)^2+k[/tex], where [tex]V(h,k)[/tex] is the vertex



Hence the vertex is[tex](3,-6)[/tex]






the equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k ) are the coordinates of the vertex and a is a multiplier

To obtain this form use the method of completing the square

We require the coefficient of the x² term to be 1 so factor out - 4

y = - 4(x² - 6x + [tex]\frac{42}{4}[/tex])

add/subtract (half the coefficient of the x-term )² to x² - 6x

y = - 4(x² + 2(- 3)x +9 - 9 +[tex]\frac{21}{2}[/tex])

= - 4(x - 3)² - 4 (- 9 +[tex]\frac{21}{2}[/tex])

= - 4(x - 3)² - 6 ← in vertex form

with vertex = (3, - 6)