Respuesta :

For this case we have the following function:

[tex] f (x) = 9x + 1
[/tex]

Rewriting we have:

[tex] y = 9x + 1
[/tex]

To find the inverse function, we must clear the value of x.

We have then:

[tex] 9x = y-1
[/tex]

[tex] x=\frac{y-1}{9} [/tex]

Returning the change of variables we have:

[tex] f(x)^{-1}=\frac{x-1}{9} [/tex]

The original function evaluated at x = 3 is:

[tex] f (3) = 9 (3) + 1

f (3) = 27 + 1

f (3) = 28
[/tex]

We evaluate the inverse function for x = f (3) we have:

[tex] f(28)^{-1}=\frac{28-1}{9} [/tex]

[tex] f(28)^{-1}=\frac{27}{9} [/tex]

[tex] f(28)^{-1}=3 [/tex]

Answer:

The value of the function is:

[tex] f(28)^{-1}=3 [/tex]