Respuesta :

we know that

The Standard Form of a Quadratic Equation is
 ax² + bx + c = 0

then 
for x=0    y=-6
 a*0² + b*0 + c = -6---------> c=-6

for x=1    y=2
 a*1² + b*1 -6 = 2---------> a+b=8---------> a=8-b---------> equation 1

for x=3    y=-0
 a*3² + b*3 -6 = 0---------> 9a+3b=6---------> equation 2

substituting 1 in 2
9*(8-b)+3b=6------> 72-9b+3b=6---------> 6b=66--------> b=11
a=8-11-------> a=-3
so
a=-3
b=11
c=-6
Standard Form of a Quadratic Equation is
 -3x² + 11x - 6 = 0

the answer is
 -3x² + 11x - 6 = 0

Answer:

The required equation is [tex]-3x^2+11x-6[/tex]

Step-by-step explanation:

Consider the provided table.

As we know the standard form of the quadratic equation is [tex]y=ax^2+bx+c[/tex]

Substitute x=0 and y=-6 in above standard equation.

[tex]-6=a(0)^2+b(0)+c[/tex]

[tex]-6=c[/tex]

Substitute x=1, y=2 and c=-6 in standard equation.

[tex]2=a(1)^2+b(1)-6[/tex]

[tex]2=a+b-6[/tex]

[tex]a+b=8[/tex]

[tex]a=8-b[/tex]

Substitute x=2, y=4 and c=-6 in standard equation.

[tex]4=a(2)^2+b(2)-6[/tex]

[tex]4=4a+2b-6[/tex]

[tex]4a+2b=10[/tex]

[tex]2a+b=5[/tex]

Substitute value of a in above equation.

[tex]2(8-b)+b=5[/tex]

[tex]16-2b+b=5[/tex]

[tex]b=11[/tex]

Substitute the value of b in [tex]a=8-b[/tex]

[tex]a=8-11[/tex]

[tex]a=-3[/tex]

Hence, the required equation is [tex]-3x^2+11x-6[/tex]

RELAXING NOICE
Relax