Answer:
Step-by-step explanation:
r = [tex]\frac{a_n}{a_{n-1}} = \frac{896}{3584} = \frac{1}{4}[/tex]
Using the geometric series formula for the nth term:
[tex]S_n = a \cdot \frac{1-r^n}{1-r} => S_{6} = 3584 \cdot \frac{1 - (\frac{1}{4})^{6} }{1 - \frac{1}{4} } = 4777\frac{1}{2}[/tex]