What is the length of side s of the square shown below?

Answer:
length of side s=[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Construction: Name the given figure as ABCD in which AC=2, AD=AB=BC=CD=s.
Solution: Since, ABCD is a square,thus AD=AB=BC=CD=s.
Now, from ΔADC, we get
[tex](AC)^{2}=(AD)^{2}+(DC)^2[/tex]
⇒[tex](2)^2=s^2+s^2[/tex]
⇒[tex]4=2s^2[/tex]
⇒[tex]s^2=2[/tex]
⇒[tex]s=\sqrt{2}[/tex]
Thus, the length of side s=[tex]\sqrt{2}[/tex]