Respuesta :
[tex]\mathbf f(x,y,z)=(2z+5y)\,\mathbf i+(z+5x)\,\mathbf j+(y+2x)\,\mathbf k[/tex]
We want to find a scalar function [tex]f(x,y,z)[/tex] such that
[tex]\mathbf f(x,y,z)=\nabla f(x,y,z)=\dfrac{\partial f}{\partial x}\,\mathbf i+\dfrac{\partial f}{\partial y}\,\mathbf j+\dfrac{\partial f}{\partial z}\,\mathbf k[/tex]
[tex]\dfrac{\partial f}{\partial x}=2z+5y\implies f(x,y,z)=2xz+5xy+g(y,z)[/tex]
[tex]\dfrac{\partial f}{\partial y}=z+5x=5x+\dfrac{\partial g}{\partial y}[/tex]
[tex]\implies\dfrac{\partial g}{\partial y}=z\implies g(y,z)=yz+h(z)[/tex]
[tex]\dfrac{\partial f}{\partial z}=y+2x=2x+\dfrac{\partial g}{\partial z}[/tex]
[tex]\implies\dfrac{\partial g}{\partial z}=y+\dfrac{\mathrm dh}{\mathrm dz}=y[/tex]
[tex]\implies\dfrac{\mathrm dh}{\mathrm dz}=0\implies h(z)=C[/tex]
where [tex]C[/tex] is an arbitrary constant.
So,
[tex]f(x,y,z)=2xz+5xy+yz+C[/tex]
By the gradient theorem, the line integral along any path from (0, 0, 0) to (1, 1, 1) subject to the vector field [tex]\mathbf f(x,y,z)[/tex] is then
[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=f(1,1,1)-f(0,0,0)=2+5+1=8[/tex]
(where [tex]\mathcal C[/tex] is any path connecting the given points)
We want to find a scalar function [tex]f(x,y,z)[/tex] such that
[tex]\mathbf f(x,y,z)=\nabla f(x,y,z)=\dfrac{\partial f}{\partial x}\,\mathbf i+\dfrac{\partial f}{\partial y}\,\mathbf j+\dfrac{\partial f}{\partial z}\,\mathbf k[/tex]
[tex]\dfrac{\partial f}{\partial x}=2z+5y\implies f(x,y,z)=2xz+5xy+g(y,z)[/tex]
[tex]\dfrac{\partial f}{\partial y}=z+5x=5x+\dfrac{\partial g}{\partial y}[/tex]
[tex]\implies\dfrac{\partial g}{\partial y}=z\implies g(y,z)=yz+h(z)[/tex]
[tex]\dfrac{\partial f}{\partial z}=y+2x=2x+\dfrac{\partial g}{\partial z}[/tex]
[tex]\implies\dfrac{\partial g}{\partial z}=y+\dfrac{\mathrm dh}{\mathrm dz}=y[/tex]
[tex]\implies\dfrac{\mathrm dh}{\mathrm dz}=0\implies h(z)=C[/tex]
where [tex]C[/tex] is an arbitrary constant.
So,
[tex]f(x,y,z)=2xz+5xy+yz+C[/tex]
By the gradient theorem, the line integral along any path from (0, 0, 0) to (1, 1, 1) subject to the vector field [tex]\mathbf f(x,y,z)[/tex] is then
[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=f(1,1,1)-f(0,0,0)=2+5+1=8[/tex]
(where [tex]\mathcal C[/tex] is any path connecting the given points)
Following are the response to the given question:
Given:
[tex]\bold{F(x, y, z) =(2z+5y)i +(3z +5x)j+(3y +2x)k}[/tex]
To find:
function=?
line integral=?
Solution:
For point a:
Consider the vector field:
[tex]F(x, y, z) =(2z+5y)i +(3z +5x)j+(3y +2x)k:[/tex]
[tex]f_x= 2z +5y \\\\f_y = 3z + 5x \\\\f_z = 3y + 2x \\\\[/tex]
Integrating [tex]f_x = 2z +5y[/tex] with respect to [tex]x:[/tex]
[tex]f(x,y,z) = \int (2z + 5y )dx = 2xz + 5xy + g( y,z) \\\\f_y = 3z + 5x+g'(y,z)[/tex]
So, [tex]g(y,z) = 0 \\\\[/tex]
[tex]f (x, y,z) = 2xz +5xy +h(z) \\\\ f_z = 3y = h'(z)\\\\[/tex]
So, [tex]h(z) = 3 yz[/tex]
Thus,
[tex]\boxed{\boxed{\boxed{ f(x, y, z) = 2xz + 5xy +3yz}}}[/tex]
For point b:
[tex]\to \int_c F\ dr = f(1,1,1)- f(0,0,0)[/tex]
[tex]= [2(1)(1)+5(1)(1) +3(1)(1)] -[ 2(0)(0)+5(0)(0) +3(0) (0)]\\\\= (2+5+3)-0\\\\ = 10[/tex]
Learn more:
brainly.com/question/7193501