Answer:
[tex]\displaystyle f'(x)=-\frac{2}{x^{{}^{3}\!/\!{}_{2}}}[/tex]
Step-by-step explanation:
We have the function:
[tex]\displaystyle f(x)=\frac{4}{\sqrt x}[/tex]
And we want to find the derivative using the limit process.
Recall that the definition of a derivative is:
[tex]\displaystyle \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/tex]
Therefore, by substitution:
[tex]\displaystyle \lim_{h \to 0}\frac{\dfrac{4}{\sqrt{x+h}}-\dfrac{4}{\sqrt x}}{h}[/tex]
First and foremost, we can move the constant factor outside of the limit:
[tex]\displaystyle =\lim_{h \to 0}\frac{4\left(\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt x}\right)}{h}\\ \\=4\lim_{h \to 0}\frac{\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt x}}{h}[/tex]
Next, we can multiply everything by (√(x + h)(√x) to eliminate the fractions in the denominator. Therefore:
[tex]\displaystyle =4\lim_{h \to 0}\frac{\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt x}}{h}\left(\frac{\sqrt{x+h}\sqrt x}{\sqrt{x+h}\sqrt x}\right)[/tex]
Distribute:
[tex]\displaystyle =4\lim_{h \to 0}\frac{\left({\sqrt{x+h}\sqrt x}\right)\dfrac{1}{\sqrt{x+h}}-(\sqrt{x+h}\sqrt x)\dfrac{1}{\sqrt x}}{h({\sqrt{x+h}\sqrt x})}[/tex]
Distribute and simplify:
[tex]\displaystyle =4 \lim_{h\to 0}\frac{\sqrt x-\sqrt{x+h}}{h(\sqrt{x+h}\sqrt{x}) }[/tex]
Next, we can multiply both sides by the conjugate of the numerator. In other words, multiply by (√x + √(x + h)). Thus:
[tex]\displaystyle = 4\lim_{h\to 0}\frac{\sqrt x-\sqrt{x+h}}{h(\sqrt{x+h}\sqrt{x}) }\left(\frac{\sqrt x +\sqrt{x+h}}{\sqrt x +\sqrt{x+h}\right)}[/tex]
Simplify:
[tex]\displaystyle =4 \lim_{h \to 0} \frac{x-(x+h)}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}\\ \\ \\ =4 \lim_{h \to 0} \frac{x-x-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})} \\ \\ \\=4 \lim_{h \to 0} \frac{-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}[/tex]
Cancel like terms:
[tex]\displaystyle =4 \lim_{h \to 0} -\frac{1}{(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}[/tex]
Now, we can use direct substitution. Hence:
[tex]\displaystyle \Rightarrow4 \left( -\frac{1}{(\sqrt{x+0}\sqrt x)(\sqrt x+\sqrt{x+0})}\right)[/tex]
Simplify:
[tex]\displaystyle =4\left( -\frac{1}{(\sqrt{x}\sqrt x)(\sqrt x+\sqrt{x})}\right) \\ \\ \\ =4\left( -\frac{1}{(x)(2\sqrt{x})}\right)[/tex]
Multiply:
[tex]\displaystyle =- \frac{4}{2x\sqrt{x}}[/tex]
Reduce and rewrite:
[tex]\displaystyle =-\frac{2}{x(x^{{}^{1}\! / \! {}_{2} \!})}[/tex]
Simplify:
[tex]\displaystyle =-\frac{2}{x^{{}^{3}\!/\!{}_{2}}}[/tex]
Therefore:
[tex]\displaystyle f'(x)=-\frac{2}{x^{{}^{3}\!/\!{}_{2}}}[/tex]