Respuesta :
[tex]w(x,y,z)=xy+yz[/tex]
[tex]x(t)=e^{2t}[/tex]
[tex]y(t)=2+\sin4t[/tex]
[tex]z(t)=2+\cos5t[/tex]
[tex]\dfrac{\mathrm dw}{\mathrm dt}=\dfrac{\partial w}{\partial x}\dfrac{\mathrm dx}{\mathrm dt}+\dfrac{\partial w}{\partial y}\dfrac{\mathrm dy}{\mathrm dt}+\dfrac{\partial w}{\partial z}\dfrac{\mathrm dz}{\mathrm dt}[/tex]
[tex]\dfrac{\mathrm dw}{\mathrm dt}=y\dfrac{\mathrm dx}{\mathrm dt}+(x+z)\dfrac{\mathrm dy}{\mathrm dt}+y\dfrac{\mathrm dz}{\mathrm dt}[/tex]
[tex]\dfrac{\mathrm dw}{\mathrm dt}=2ye^{2t}+4(x+z)\cos4t-5y\sin5t[/tex]
[tex]x(t)=e^{2t}[/tex]
[tex]y(t)=2+\sin4t[/tex]
[tex]z(t)=2+\cos5t[/tex]
[tex]\dfrac{\mathrm dw}{\mathrm dt}=\dfrac{\partial w}{\partial x}\dfrac{\mathrm dx}{\mathrm dt}+\dfrac{\partial w}{\partial y}\dfrac{\mathrm dy}{\mathrm dt}+\dfrac{\partial w}{\partial z}\dfrac{\mathrm dz}{\mathrm dt}[/tex]
[tex]\dfrac{\mathrm dw}{\mathrm dt}=y\dfrac{\mathrm dx}{\mathrm dt}+(x+z)\dfrac{\mathrm dy}{\mathrm dt}+y\dfrac{\mathrm dz}{\mathrm dt}[/tex]
[tex]\dfrac{\mathrm dw}{\mathrm dt}=2ye^{2t}+4(x+z)\cos4t-5y\sin5t[/tex]
The chain rule is one of the techniques to take the derivative of an expression.
The value of the differentiation is: [tex]\mathbf{\frac{dw}{dt} = 2ye^{2t} +4(x + z)cos(4t) -5ysin(5t)}[/tex]
The given parameters are:
[tex]\mathbf{w = xy + yz}[/tex]
[tex]\mathbf{x = e^{2t}}[/tex]
[tex]\mathbf{y = 2 + sin(4t)}[/tex]
[tex]\mathbf{z = 2 + cos(5t)}[/tex]
Expand
[tex]\mathbf{w = y(x + z)}[/tex]
Differentiate w with respect to t using chain rule.
So, we have:
[tex]\mathbf{w' = \frac{dw}{dx} \times x' +\frac{dw}{dy} \times y' +\frac{dw}{dz} \times z'}[/tex]
[tex]\mathbf{w' = y \times x'+(x + z)\times y' +y \times z'}[/tex]
Differentiate x, y and z with respect to t
[tex]\mathbf{x = e^{2t}}[/tex]
[tex]\mathbf{x' = 2e^{2t}}[/tex]
[tex]\mathbf{y = 2 + sin(4t)}[/tex]
[tex]\mathbf{y' = 4cos(4t)}[/tex]
[tex]\mathbf{z = 2 + cos(5t)}[/tex]
[tex]\mathbf{z' = -5sin(5t)}[/tex]
Substitute these values in the equation of w'
[tex]\mathbf{w' = y \times x'+(x + z)\times y' +y \times z'}[/tex]
[tex]\mathbf{w' = y \times 2e^{2t} +(x + z) \times 4cos(4t) -y\times 5sin(5t)}[/tex]
[tex]\mathbf{w' = 2ye^{2t} +4(x + z)cos(4t) -5ysin(5t)}[/tex]
Hence,
[tex]\mathbf{\frac{dw}{dt} = 2ye^{2t} +4(x + z)cos(4t) -5ysin(5t)}[/tex]
Read more about chain rule at:
https://brainly.com/question/2285262