Answer:
12
Step-by-step explanation:
The formula given is [tex]a_n=84+(n-1)(-6)[/tex]
Where [tex]a_n[/tex] gives the nth term
Since we want 13th term, we can say we want [tex]a_{13}[/tex] and we plug in 13 in [tex]n[/tex] into the formula. So we get:
[tex]a_n=84+(n-1)(-6)\\a_{13}=84+(13-1)(-6)\\a_{13}=84+(12)(-6)\\a_{13}=84-72\\a_{13}=12[/tex]
So, the 13th term of the sequence is 12