Answer:
[tex]108\ N[/tex]
Explanation:
Mass of object, [tex]m=1.50\ kg.[/tex]
Length of string, [tex]r=0.50\ m.[/tex]
Tangential speed, [tex]v_t=6.0\ m/s.[/tex]
Now, centripetal force F of a object moving in given radius r and mass m moving with velocity v.
Here , object moves along the ends of string. Therefore, radius is equal to length of string.
[tex]F=\dfrac{m \times v_t^2}{r}.[/tex]
Putting values of m,v and r in above equation.
We get, [tex]F=\dfrac{1.50\times (6.0)^2}{0.50} \ N=108 \ N.[/tex]
Hence, this is the required solution.