Respuesta :
[tex]\bf \textit{middle point of 2 points }\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
A&({{ x}}\quad ,&{{ y}})\quad
% (c,d)
C&({{ -5}}\quad ,&{{ 4}})
\end{array}\qquad
% coordinates of midpoint
\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)[/tex]
[tex]\bf \left( \cfrac{-5+x}{2}~,~\cfrac{4+y}{2} \right)=\stackrel{B}{(-2,5)}\implies \begin{cases} \cfrac{-5+x}{2}=-2\\\\ -5+x=-4\\ \boxed{x=1}\\ ----------\\ \cfrac{4+y}{2}=5\\\\ 4+y=10\\ \boxed{y=6} \end{cases}[/tex]
[tex]\bf \left( \cfrac{-5+x}{2}~,~\cfrac{4+y}{2} \right)=\stackrel{B}{(-2,5)}\implies \begin{cases} \cfrac{-5+x}{2}=-2\\\\ -5+x=-4\\ \boxed{x=1}\\ ----------\\ \cfrac{4+y}{2}=5\\\\ 4+y=10\\ \boxed{y=6} \end{cases}[/tex]
The coordinates of the missing endpoints (1,6) and can be determined by using the midpoint formula.
Given :
- B is the midpoint of AC.
- Points -- C(-5,4), B(-2,5)
The following steps can be used in order to determine the coordinates of the missing endpoint:
Step 1 - According to the given data, points C(-5,4) and B(-2,5).
Step 2 - The mid-point formula is given below:
[tex]\rm x = \dfrac{x_1+x_2}{2}[/tex]
[tex]\rm y = \dfrac{y_1+y_2}{2}[/tex]
Step 3 - Let the endpoint be (x,y).
Step 4 - Now, substitute the values of the points in the above formula.
[tex]\rm -2= \dfrac{-5+x}{2}[/tex]
[tex]\rm 5 = \dfrac{4+y}{2}[/tex]
Step 5 - Simplify the above expression.
x = 1
y = 6
For more information, refer to the link given below:
https://brainly.com/question/10651868
