Respuesta :

Step-by-step explanation:

Remember , for RIGHT triangles  S-O-H-C-A-H-T-O-A

Cos 30 = Adjacent leg / Hypotenuse

            =   15 sqrt 3 / Hypot

 Hypot = (15 sqrt 3) / Cos 30

then  sin 30 = ED / Hypot      (Hypot was found in previous step)

       hypot * sin 30 = ED    

Answer:

DQ = 30 , DE = 15

Step-by-step explanation:

Using the cosine ratio in the right triangle to find hypotenuse DQ and the exact value

cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{EQ}{DQ}[/tex] = [tex]\frac{15\sqrt{3} }{DQ}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross multiply )

[tex]\sqrt{3}[/tex] × DQ = 30[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

DQ = 30

------------------------------------------

Using the tangent ratio in the right triangle to find short leg DE and the exact value

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{DE}{EQ}[/tex] = [tex]\frac{DE}{15\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross multiply )

[tex]\sqrt{3}[/tex] × DE = 15[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

DE = 15

ACCESS MORE