How would I find the hypotenuse and short leg?

Step-by-step explanation:
Remember , for RIGHT triangles S-O-H-C-A-H-T-O-A
Cos 30 = Adjacent leg / Hypotenuse
= 15 sqrt 3 / Hypot
Hypot = (15 sqrt 3) / Cos 30
then sin 30 = ED / Hypot (Hypot was found in previous step)
hypot * sin 30 = ED
Answer:
DQ = 30 , DE = 15
Step-by-step explanation:
Using the cosine ratio in the right triangle to find hypotenuse DQ and the exact value
cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] , then
cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{EQ}{DQ}[/tex] = [tex]\frac{15\sqrt{3} }{DQ}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross multiply )
[tex]\sqrt{3}[/tex] × DQ = 30[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
DQ = 30
------------------------------------------
Using the tangent ratio in the right triangle to find short leg DE and the exact value
tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then
tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{DE}{EQ}[/tex] = [tex]\frac{DE}{15\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross multiply )
[tex]\sqrt{3}[/tex] × DE = 15[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
DE = 15