Respuesta :
area of triangle
- = 1/2bh
- = 1/2*3*2
- = 3 units
area of rectangle
- = bh
- = 2*3
- = 6 units
area of regular pentagon
- = 1/2*p*a
- = 1/2*5*3*2
- = 15 units
area of sector
- = θ/360° x πr^2
- = 66°/360° x 3.14*3*3
- = 5.181 units
thus, the total area would be
- = 3 + 6 + 15 + 5.181
- = 29.181 units
Answer:
- Area of triangle: 3 square units
- Area of rectangle: 6 square units
- Area of regular polygon: 15 square units
- Area of sector: 5.18 square units
- Total: 29.18 square units
Step-by-step explanation:
Area of the triangle
The area of any triangle is half the product of its base and height:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a triangle}}\\\\A=\dfrac{1}{2}bh\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$b$ is the base.}\\ \phantom{ww}\bullet\;\textsf{$h$ is the height.}\end{array}}[/tex]
In this case:
- b = 3
- h = 2
Substitute the values of b and h into the area equation and solve for A:
[tex]A=\dfrac{1}{2} \cdot 3 \cdot 2\\\\\\A=\dfrac{1}{2}\cdot 6\\\\\\A=3\; \sf square\;units[/tex]
Therefore, the area of the triangle is:
[tex]\Large\boxed{\boxed{\textsf{Area of triangle:}\quad 3\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
Area of the rectangle
The area of any rectangle is the product of its width and length:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a rectangle}}\\\\A=wl\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$w$ is the width.}\\ \phantom{ww}\bullet\;\textsf{$l$ is the length.}\end{array}}[/tex]
In this case:
- w = 2
- l = 3
Substitute the values of w and l into the area equation and solve for A:
[tex]A=2 \cdot 3\\\\A=6\; \sf square\;units[/tex]
Therefore, the area of the rectangle is:
[tex]\Large\boxed{\boxed{\textsf{Area of rectangle:}\quad 6\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
Area of the regular polygon
The formula for the area of a regular polygon is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a regular polygon}}\\\\A=\dfrac{n\cdot s\cdot a}{2}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$n$ is the number of sides.}\\ \phantom{ww}\bullet\;\textsf{$s$ is the length of one side.}\\ \phantom{ww}\bullet\;\textsf{$a$ is the apothem.}\end{array}}[/tex]
In this case:
- n = 5
- s = 3
- a = 2
Substitute the values of n, s and a into the area equation and solve for A:
[tex]A=\dfrac{5 \cdot 3 \cdot 2}{2}\\\\\\A=\dfrac{30}{2}\\\\\\A=15\; \sf square\;units[/tex]
Therefore, the area of the regular polygon is:
[tex]\Large\boxed{\boxed{\textsf{Area of regular polygon:}\quad 15\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
Area of the sector
The formula for the area of a sector is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a sector}}\\\\A=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the radius.}\\\phantom{ww}\bullet\;\;\textsf{$\theta$ is the angle measured in degrees.}\end{array}}[/tex]
In this case:
- θ = 66°
- r = 3
- π = 3.14
Substitute the values of θ r and π into the area equation and solve for A:
[tex]A=\left(\dfrac{66^{\circ}}{360^{\circ}}\right) \cdot 3.14 \cdot 3^2\\\\\\A=\dfrac{11}{60}\cdot 3.14 \cdot 9\\\\\\A=\dfrac{11}{60}\cdot28.26\\\\\\A=5.181\\\\\\A=5.18\; \sf square\;units[/tex]
Therefore, the area of the sector is:
[tex]\Large\boxed{\boxed{\textsf{Area of sector:}\quad 5.18\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
Total area
To calculate the total area, sum the individual areas:
[tex]\textsf{Total area}=3+6+15+5.18\\\\\textsf{Total area}=9+15+5.18\\\\\textsf{Total area}=24+5.18\\\\\textsf{Total area}=29.18\; \sf square\;units[/tex]
Therefore, the total area of the composite shape is:
[tex]\Large\boxed{\boxed{\textsf{Total:}\quad 29.18\;\sf units^2}}[/tex]