Respuesta :

area of triangle

  • = 1/2bh
  • = 1/2*3*2
  • = 3 units

area of rectangle

  • = bh
  • = 2*3
  • = 6 units

area of regular pentagon

  • = 1/2*p*a
  • = 1/2*5*3*2
  • = 15 units

area of sector

  • = θ/360° x πr^2
  • = 66°/360° x 3.14*3*3
  • = 5.181 units

thus, the total area would be

  • = 3 + 6 + 15 + 5.181
  • = 29.181 units

Answer:

  • Area of triangle:  3 square units
  • Area of rectangle:  6 square units
  • Area of regular polygon:  15 square units
  • Area of sector:  5.18 square units
  • Total:  29.18 square units

Step-by-step explanation:

Area of the triangle

The area of any triangle is half the product of its base and height:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a triangle}}\\\\A=\dfrac{1}{2}bh\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$b$ is the base.}\\ \phantom{ww}\bullet\;\textsf{$h$ is the height.}\end{array}}[/tex]

In this case:

  • b = 3
  • h = 2

Substitute the values of b and h into the area equation and solve for A:

[tex]A=\dfrac{1}{2} \cdot 3 \cdot 2\\\\\\A=\dfrac{1}{2}\cdot 6\\\\\\A=3\; \sf square\;units[/tex]

Therefore, the area of the triangle is:

[tex]\Large\boxed{\boxed{\textsf{Area of triangle:}\quad 3\;\sf units^2}}[/tex]

[tex]\dotfill[/tex]

Area of the rectangle

The area of any rectangle is the product of its width and length:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a rectangle}}\\\\A=wl\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$w$ is the width.}\\ \phantom{ww}\bullet\;\textsf{$l$ is the length.}\end{array}}[/tex]

In this case:

  • w = 2
  • l = 3

Substitute the values of w and l into the area equation and solve for A:

[tex]A=2 \cdot 3\\\\A=6\; \sf square\;units[/tex]

Therefore, the area of the rectangle is:

[tex]\Large\boxed{\boxed{\textsf{Area of rectangle:}\quad 6\;\sf units^2}}[/tex]

[tex]\dotfill[/tex]

Area of the regular polygon

The formula for the area of a regular polygon is:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a regular polygon}}\\\\A=\dfrac{n\cdot s\cdot a}{2}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$n$ is the number of sides.}\\ \phantom{ww}\bullet\;\textsf{$s$ is the length of one side.}\\ \phantom{ww}\bullet\;\textsf{$a$ is the apothem.}\end{array}}[/tex]

In this case:

  • n = 5
  • s = 3
  • a = 2

Substitute the values of n, s and a into the area equation and solve for A:

[tex]A=\dfrac{5 \cdot 3 \cdot 2}{2}\\\\\\A=\dfrac{30}{2}\\\\\\A=15\; \sf square\;units[/tex]

Therefore, the area of the regular polygon is:

[tex]\Large\boxed{\boxed{\textsf{Area of regular polygon:}\quad 15\;\sf units^2}}[/tex]

[tex]\dotfill[/tex]

Area of the sector

The formula for the area of a sector is:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a sector}}\\\\A=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the radius.}\\\phantom{ww}\bullet\;\;\textsf{$\theta$ is the angle measured in degrees.}\end{array}}[/tex]

In this case:

  • θ = 66°
  • r = 3
  • π = 3.14

Substitute the values of θ r and π into the area equation and solve for A:

[tex]A=\left(\dfrac{66^{\circ}}{360^{\circ}}\right) \cdot 3.14 \cdot 3^2\\\\\\A=\dfrac{11}{60}\cdot 3.14 \cdot 9\\\\\\A=\dfrac{11}{60}\cdot28.26\\\\\\A=5.181\\\\\\A=5.18\; \sf square\;units[/tex]

Therefore, the area of the sector is:

[tex]\Large\boxed{\boxed{\textsf{Area of sector:}\quad 5.18\;\sf units^2}}[/tex]

[tex]\dotfill[/tex]

Total area

To calculate the total area, sum the individual areas:

[tex]\textsf{Total area}=3+6+15+5.18\\\\\textsf{Total area}=9+15+5.18\\\\\textsf{Total area}=24+5.18\\\\\textsf{Total area}=29.18\; \sf square\;units[/tex]

Therefore, the total area of the composite shape is:

[tex]\Large\boxed{\boxed{\textsf{Total:}\quad 29.18\;\sf units^2}}[/tex]