Respuesta :
Answer :
- a(∆) = 40 in^2
- a(r) = 144 in^2
- a(f) = 184 in^2
Explanation :
area of a triangle is given by,
- a(∆) = 1/2bh
- a(∆) = 1/2*16in*5in
- a(∆) = 40 in^2
area of a rectangle is given by,
- a(r) = bh
- a(r) = 9in*16in
- a(r) = 144 in^2
thus,
the area of the figure would be,
- a(f) = a(∆) + a(r)
- a(f) = 40 in^2 + 144 in^2
- a(f) = 184 in^2
___
tripped,tysm msm<3
Answer:
[tex] A_\triangle = 40 \, \textsf{in}^2 [/tex]
[tex] A \boxed{\quad } = 144 \, \textsf{in}^2 [/tex]
[tex] A_{\textsf{total}} = 184 \, \textsf{in}^2 [/tex]
Step-by-step explanation:
To find the total area of the figure, which consists of a triangle and a rectangle, we add the individual areas of each shape.
Area of Triangle ([tex]A_\triangle[/tex]):
The area of a triangle is given by the formula:
[tex]A_\triangle = \dfrac{1}{2} \times \textsf{base} \times \textsf{height}[/tex].
Given:
- Base = 16 in,
- Height = 5 in.
Substitute the value and calculate:
[tex] A_\triangle = \dfrac{1}{2} \times 16 \times 5 [/tex]
[tex] A_\triangle = 40 \, \textsf{in}^2 [/tex]
Area of Rectangle ([tex]A\boxed{}[/tex]):
The area of a rectangle is given by the formula:
[tex]A\boxed{\quad} = \textsf{length} \times \textsf{width}[/tex].
Given:
- Length = 16 in,
- Width = 9 in.
Substitute the value and calculate:
[tex] A\boxed{\quad } = 16 \times 9 [/tex]
[tex] A\boxed{\quad } = 144 \, \textsf{in}^2 [/tex]
Total Area of the Figure ([tex]A_{\textsf{total}})[/tex]:
To find the total area, add the individual areas of the triangle and the rectangle.
[tex] A_{\textsf{total}} = A_\triangle + A\boxed{\quad} [/tex]
[tex] A_{\textsf{total}} = 40 + 144 [/tex]
[tex] A_{\textsf{total}} = 184 \, \textsf{in}^2 [/tex]
Therefore, the total area of the figure is [tex]184 \, \textsf{in}^2[/tex].