Respuesta :

Answer :

  • a(∆) = 40 in^2
  • a(r) = 144 in^2
  • a(f) = 184 in^2

Explanation :

area of a triangle is given by,

  • a(∆) = 1/2bh
  • a(∆) = 1/2*16in*5in
  • a(∆) = 40 in^2

area of a rectangle is given by,

  • a(r) = bh
  • a(r) = 9in*16in
  • a(r) = 144 in^2

thus,

the area of the figure would be,

  • a(f) = a(∆) + a(r)
  • a(f) = 40 in^2 + 144 in^2
  • a(f) = 184 in^2

___

tripped,tysm msm<3

msm555

Answer:

[tex] A_\triangle = 40 \, \textsf{in}^2 [/tex]

  [tex] A \boxed{\quad } = 144 \, \textsf{in}^2 [/tex]

[tex] A_{\textsf{total}} = 184 \, \textsf{in}^2 [/tex]

Step-by-step explanation:

To find the total area of the figure, which consists of a triangle and a rectangle, we add the individual areas of each shape.

Area of Triangle ([tex]A_\triangle[/tex]):

  The area of a triangle is given by the formula:

[tex]A_\triangle = \dfrac{1}{2} \times \textsf{base} \times \textsf{height}[/tex].

    Given:

  • Base = 16 in,
  • Height = 5 in.

Substitute the value and calculate:

  [tex] A_\triangle = \dfrac{1}{2} \times 16 \times 5 [/tex]

[tex] A_\triangle = 40 \, \textsf{in}^2 [/tex]

Area of Rectangle ([tex]A\boxed{}[/tex]):

  The area of a rectangle is given by the formula:

[tex]A\boxed{\quad} = \textsf{length} \times \textsf{width}[/tex]. 

  Given:

  • Length = 16 in,
  • Width = 9 in.

Substitute the value and calculate:  

  [tex] A\boxed{\quad } = 16 \times 9 [/tex]

  [tex] A\boxed{\quad } = 144 \, \textsf{in}^2 [/tex]

Total Area of the Figure ([tex]A_{\textsf{total}})[/tex]:

  To find the total area, add the individual areas of the triangle and the rectangle.  

  [tex] A_{\textsf{total}} = A_\triangle + A\boxed{\quad} [/tex]

[tex] A_{\textsf{total}} = 40 + 144 [/tex]

[tex] A_{\textsf{total}} = 184 \, \textsf{in}^2 [/tex]

Therefore, the total area of the figure is [tex]184 \, \textsf{in}^2[/tex].