We are looking for the derivative of [tex]y=\dfrac{x^{5.5}+x}{\sqrt{x}}\,[/tex].
To make the problem easier, we rewrite fraction on the right using [tex]x^0^.^5[/tex] instead of [tex]\sqrt{x}[/tex].
[tex]y=\dfrac{x^{5.5}+x}{x^0^.^5}\,[/tex]
Now split the fraction into the sum of two pieces.
[tex]y=\dfrac{x^{5.5}+x}{x^0^.^5} + \dfrac{x}{x^0^.^5} [/tex]
We simplify this further using the laws of exponents.
[tex]x=x^5+x^0^.^5[/tex]
Using the power rule, we differentiate.
[tex] \dfrac{dy}{dx} = 5x^4+0.5x^-^0^.^5[/tex]
The standard way to write this is
[tex] \dfrac{dx}{dy} = 5x^4 + \dfrac{1}{2 \sqrt{x} } [/tex]