The volume of the solution in the tank is
[tex]V(t)=100+(4-2)t=100+2t[/tex]
and so the solution will overflow when [tex]V(t)=200[/tex]. This happens at [tex]t=50[/tex].
Now the rate of change of the amount of salt in the tank at time [tex]t[/tex], [tex]A(t)[/tex], is described by
[tex]\dfrac{\mathrm dA}{\mathrm dt}=\left(\dfrac14\text{ lb/gal}\right)\left(4\text{ gal/min}\right)-\left(\dfrac{A(t)}{100+2t}\text{ lb/gal}\right)\left(2\text{ gal/min}\right)[/tex]
[tex]A'+\dfrac A{50+t}=1[/tex]
which is linear in [tex]A[/tex]. Multiplying both sides by [tex]50+t[/tex], we have
[tex](50+t)A'+A=50+t[/tex]
[tex]\bigg((50+t)A\bigg)'=50+t[/tex]
[tex](50+t)A=\displaystyle\int(50+t)\,\mathrm dt=50t+\dfrac12t^2+C[/tex]
[tex]A=\dfrac{100t+t^2}{100+2t}+\dfrac C{50+t}[/tex]
There are 20 lbs of salt in the tank at the start, so [tex]A(0)=20[/tex] and we get that
[tex]20=0+\dfrac C{50}\implies C=1000[/tex]
so that the amount of salt in the tank is given by the function
[tex]A(t)=\dfrac{100t+t^2}{100+2t}+\dfrac{1000}{50+t}=\dfrac{2000+100t+t^2}{100+2t}[/tex]
At [tex]t=50[/tex], the tank contains
[tex]A(50)=\dfrac{2000+100(50)+50^2}{100+2(50)}=\dfrac{95}2[/tex]
pounds of salt.