Guessing on how the system is expressed:
[tex]\begin{bmatrix}x_1\\x_2\end{bmatrix}'=\begin{bmatrix}1&-2\\2&1\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}[/tex]
The coefficient matrix has eigenvalues [tex]\lambda=1+2i[/tex] with corresponding eigenvectors [tex]\begin{bmatrix}\pm i&1\end{bmatrix}^\top[/tex]. This means the characteristic solution is
[tex]\begin{bmatrix}x_1\\x_2\end{bmatrix}=Ce^{(1+2i)t}\begin{bmatrix}i\\1\end{bmatrix}[/tex]
[tex]\begin{bmatrix}x_1\\x_2\end{bmatrix}=Ce^t(\cos2t+i\sin2t)\begin{bmatrix}i\\1\end{bmatrix}[/tex]
[tex]\begin{bmatrix}x_1\\x_2\end{bmatrix}=C_1\begin{bmatrix}-e^t\sin2t\\e^t\cos2t\end{bmatrix}+C_2\begin{bmatrix}e^t\cos2t\\e^t\sin2t\end{bmatrix}[/tex]