Respuesta :

Law of Sines: sinA/a = sinB/b

so sinB = b * sinA/a = 17 * sin56/16 = 0.88

B = 61.7° or 118.3°


To solve the triangles, C = 180 - A - B

so C = 180 - 56 - 61.7 = 62.3
°; or

C = 180 - 56 - 118.3 = 5.7
°

Answer:

Triangle 1:

[tex]A=56^\circ,\ B=62^\circ,\ C=62^\circ[/tex]

[tex]a=16,\ b=17,\ c=17[/tex]

Triangle 2:

[tex]A=56^\circ,\ B=118^\circ,\ C=6^\circ[/tex]

[tex]a=16,\ b=17,\ c=2[/tex]

Step-by-step explanation:

Given: [tex]A=56^\circ, a=16, b=17[/tex]

Sine law:

[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]

Substitute the given values into law

[tex]\dfrac{\sin 56^\circ}{16}=\dfrac{\sin B}{17}=\dfrac{\sin C}{c}[/tex]

[tex]\dfrac{\sin 56^\circ}{16}=\dfrac{\sin B}{17}[/tex]

[tex]B=62^\circ\ \text{ or }118^\circ[/tex]

Possible value of C

[tex]A+B+C=180^\circ[/tex]

[tex]C=62^\circ\ \text{ or }6^\circ[/tex]

Triangle 1:

[tex]A=56^\circ,\ B=62^\circ,\ C=62^\circ[/tex]

[tex]a=16,\ b=17,\ c=17[/tex]

Triangle 2:

[tex]A=56^\circ,\ B=118^\circ,\ C=6^\circ[/tex]

[tex]a=16,\ b=17,\ c=2[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico