Respuesta :
Law of Sines: sinA/a = sinB/b
so sinB = b * sinA/a = 17 * sin56/16 = 0.88
B = 61.7° or 118.3°
To solve the triangles, C = 180 - A - B
so C = 180 - 56 - 61.7 = 62.3°; or
C = 180 - 56 - 118.3 = 5.7°
so sinB = b * sinA/a = 17 * sin56/16 = 0.88
B = 61.7° or 118.3°
To solve the triangles, C = 180 - A - B
so C = 180 - 56 - 61.7 = 62.3°; or
C = 180 - 56 - 118.3 = 5.7°
Answer:
Triangle 1:
[tex]A=56^\circ,\ B=62^\circ,\ C=62^\circ[/tex]
[tex]a=16,\ b=17,\ c=17[/tex]
Triangle 2:
[tex]A=56^\circ,\ B=118^\circ,\ C=6^\circ[/tex]
[tex]a=16,\ b=17,\ c=2[/tex]
Step-by-step explanation:
Given: [tex]A=56^\circ, a=16, b=17[/tex]
Sine law:
[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]
Substitute the given values into law
[tex]\dfrac{\sin 56^\circ}{16}=\dfrac{\sin B}{17}=\dfrac{\sin C}{c}[/tex]
[tex]\dfrac{\sin 56^\circ}{16}=\dfrac{\sin B}{17}[/tex]
[tex]B=62^\circ\ \text{ or }118^\circ[/tex]
Possible value of C
[tex]A+B+C=180^\circ[/tex]
[tex]C=62^\circ\ \text{ or }6^\circ[/tex]
Triangle 1:
[tex]A=56^\circ,\ B=62^\circ,\ C=62^\circ[/tex]
[tex]a=16,\ b=17,\ c=17[/tex]
Triangle 2:
[tex]A=56^\circ,\ B=118^\circ,\ C=6^\circ[/tex]
[tex]a=16,\ b=17,\ c=2[/tex]