The required positive number whose product is 25 and whose sum is minimum is 5, 5
Sum of two numbers means adding two same or different number together
Let two positive numbers xy = 25
Divide both side by x
y = [tex]\frac{25}{x}[/tex] ----------Equation (1)
Sum of two positive numbers s = x + y -------Equation (2)
Substitute equation (1) into equation (2)
S = x + [tex]\frac{25}{x}[/tex]
differentiate with respect to x
[tex]\frac{ds}{dx} = \frac{d}{dx} (x + \frac{25}{x} ) = 1 - \frac{25}{x^{2} }[/tex]
[tex]\frac{ds}{dx} = 1-\frac{25}{x^{2} }[/tex] ---------- Equation (3)
[tex]\frac{ds}{dx} = 0[/tex]
[tex]1[/tex][tex]- \frac{25}{x^{2} }[/tex] = 0 ⇒ [tex]x^{2}[/tex] = 25
x = 5
Differentiate equation (3) again
[tex]\frac{d^{2}s }{dx^{2} } = 0 + \frac{50}{x^{2} }[/tex]
hence, at point x = 5, [tex]\frac{d^{2} s}{dx^{2} } = \frac{50}{5^{2} }[/tex] [tex]= \frac{50}{25} = 2[/tex]
Value of s minimum at point x = 5.
substitute the value of x into equation (1)
[tex]y = \frac{25}{x} = \frac{25}{5} = 5[/tex]
Therefore the required positive numbers are 5, 5.
Learn more about sum of two positive numbers here: https://brainly.ph/question/99369
#SPJ1