Cosine theorem:
[tex]\begin{gathered} a^2=b^2+c^2-2bccosA \\ b^2=a^2+c^2-2ac\cos B \\ c^2=a^2+b^2-2ab\cos C \end{gathered}[/tex]a= 34ft
b = 20ft
c = 18ft
[tex]\begin{gathered} a^2-b^2-c^2=-2bc\cos A \\ \frac{a^2-b^2-c^2}{-2bc}=\cos A \\ \\ A=\cos ^{-1}(\frac{a^2-b^2-c^2}{-2bc}) \end{gathered}[/tex][tex]B=\cos ^{-1}(\frac{b^2-a^2-c^2}{-2ac})[/tex][tex]C=\cos ^{-1}(\frac{c^2-a^2-b^2}{-2ab})[/tex][tex]\begin{gathered} A=\cos ^{-1}(\frac{34^2-20^2-18^2}{-2(20)(18)}) \\ \\ A=\cos ^{-1}(\frac{432}{-720})=126.86 \end{gathered}[/tex][tex]\begin{gathered} B=\cos ^{-1}(\frac{20^2-34^2-18^2}{-2(34)(18)}) \\ \\ B=\cos ^{-1}(\frac{-1080}{-1224})=28.07 \end{gathered}[/tex][tex]\begin{gathered} C=\cos ^{-1}(\frac{18^2-34^2-20^2}{-2(34)(20)}) \\ \\ C=\cos ^{-1}(\frac{-1235}{-1360})=24.75 \end{gathered}[/tex]VABC:
A=126.86º
B=27.07º
C=24.75º
a=34ft
b=20ft
c=18ft