Given: The function below
[tex]y=\frac{1}{3}tan(\theta+30^0)[/tex]To Determine: The amplitude, the period, and the phase shift
Solution
The graph of the function is as shown below
The general equation of a tangent function is
[tex]f(x)=Atan(Bx+C)+D[/tex]Where
[tex]\begin{gathered} A=Amplitude \\ Period=\frac{\pi}{B} \\ Phase-shift=-\frac{C}{B} \\ Vertical-shift=D \end{gathered}[/tex]Let us compare the general form to the given
[tex]\begin{gathered} y=\frac{1}{3}tan(\theta+30^0) \\ f(x)=Atan(B\theta+C)+D \\ A=\frac{1}{3} \\ B=1 \\ C=30^0 \\ D=0 \end{gathered}[/tex]Therefore
[tex]\begin{gathered} Amplitude=\frac{1}{3} \\ Period=\frac{\pi}{B}=\frac{180^0}{1}=180^0 \\ Phase-shift=-\frac{C}{B}=-\frac{30^0}{1}=-30^0 \end{gathered}[/tex]Hence, the correct option is as shown below