Respuesta :

GIven:

[tex]3\sqrt{8}[/tex]

Required:

We need to find the equivalent expression

Explanation:

let

[tex]\begin{gathered} x=3\sqrt{8} \\ x^2=72 \end{gathered}[/tex]

now just we need to check that which square is 72

1)

[tex]\begin{gathered} a=\sqrt{3}\sqrt{12} \\ a^2=36\text{ not possible} \end{gathered}[/tex]

2)

[tex]\begin{gathered} b=\sqrt{6}\sqrt{12} \\ b^2=72\text{ possible} \end{gathered}[/tex]

3)

[tex]\begin{gathered} c=72 \\ c^2=5184\text{ not possible} \end{gathered}[/tex]

4)

[tex]\begin{gathered} d=\sqrt{3}\sqrt{24} \\ d^2=72\text{ possible} \end{gathered}[/tex]

5)

[tex]\begin{gathered} e=\sqrt{6}\sqrt{24} \\ e^2=144\text{ not possible} \end{gathered}[/tex]

6)

[tex]\begin{gathered} f=\sqrt{9}\sqrt{8} \\ f^2=72\text{ possible} \end{gathered}[/tex]

Final answer:

[tex]\begin{gathered} \sqrt{6}\sqrt{12} \\ \sqrt{3}\sqrt{24} \\ \sqrt{9}\sqrt{8} \end{gathered}[/tex]

are equivalent to given expression