a) Option C
b) A linear model
Explanation:To determine the correct plot from the options, we trace the x and y values given
Option A:
When x = 5, y = 1
when x = 6.6, y = 2
We see this is exact opposite of the values in the given table
Option B:
when x = 5, y = 5
when x = 6.6, y = 6.6
This is also different from the given values in the table
Option C:
when x = 1, y = 5
when x = 2, y = 6.6
when x = 3, y = 8.4
This is the same as the given values in the table.
Hence, the correct scatter plot is option C
We need to check if the points are linear:
[tex]\begin{gathered} u\sin g\text{ any two points on the table,} \\ \text{rate = }\frac{6.6\text{ - 5}}{2-1}\text{ = 1.6/1 = 1.6} \\ \text{rate = }\frac{8.4\text{ - 6.6}}{3-2}\text{ = 1.8/1 = 1.8} \\ \text{rate = }\frac{10.2\text{ - 8.4}}{3\text{ - 2}}\text{ = 1.8/1 = 1.8} \\ \text{rate = }\frac{12-10.2}{4-3}\text{ = 1.2/1 = 1.2} \end{gathered}[/tex]A linear model fit the data